Row Products of Random Matrices

نویسنده

  • MARK RUDELSON
چکیده

Let ∆1, . . . ,∆K be d × n matrices. We define the row product of these matrices as a d × n matrix, whose rows are entry-wise products of rows of ∆1, . . . ,∆K . This construction arises in certain computer science problems. We study the question, to which extent the spectral and geometric properties of the row product of independent random matrices resemble those properties for a d × n matrix with independent random entries. In particular, we show that the largest and the smallest singular values of these matrices are of the same order, as long as n d . We also consider a problem of privately releasing the summary information about a database, and use the previous results to obtain a bound for the minimal amount of noise, which has to be added to the released data to avoid a privacy breach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect sampling from the limit of deterministic products of stochastic matrices

We illustrate how a technique from the theory of random iterations of functions can be used within the theory of products of matrices. Using this technique we give a simple proof of a basic theorem about the asymptotic behavior of (deterministic) “backwards products” of row-stochastic matrices and present an algorithm for perfect sampling from the limiting common rowvector (interpreted as a pro...

متن کامل

On nest modules of matrices over division rings

Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...

متن کامل

Linear preservers of g-row and g-column majorization on M_{n,m}

Let A and B be n × m matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on Mn,m, and the possible structure of their linear preservers will be found. Also all linear operators T : Mn,m ---> Mn...

متن کامل

A Super-class Walk on Upper-triangular Matrices

Let G be the group of n×n upper-triangular matrices with elements in a finite field and ones on the diagonal. This paper applies the character theory of Andre, Carter and Yan to analyze a natural random walk based on adding or subtracting a random row from the row above.

متن کامل

Matrices with Prescribed Row and Column Sums

This is a survey of the recent progress and open questions on the structure of the sets of 0-1 and non-negative integer matrices with prescribed row and column sums. We discuss cardinality estimates, the structure of a random matrix from the set, discrete versions of the Brunn-Minkowski inequality and the statistical dependence between row and column sums.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012